View on GitHub

advent-of-code-2022

Readable Advent of Code 2022 algorithms and solutions in C language

Day 8: Treetop Tree House

Let $\mathbf{A}=(a_{i,j})$ be a matrix for $0\leq i\lt m$ and $0\leq j\lt n$, where $a_{i,j}\in\lbrace 0,\dots,9\rbrace$.

Part 1

If $m=0$ or $n=0$, then return $0$.

If $m=1$, then return $n$.

If $n=1$, then return $m$.

Let $\mathbf{B}=(b_{i,j})$ be a matrix for $0\leq i\lt m$ and $0\leq j\lt n$; assign $b_{i,j}\leftarrow 0$.

For $i\in(1,\dots,m-2)$:

For $i\in(1,\dots,m-2)$:

For $j\in(1,\dots,n-2)$:

For $j\in(1,\dots,n-2)$:

Return $\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}b_{i,j}+2m+2n-4$.

Part 2

Let $\mathbf{B}=(b_{i,j})$ be a matrix for $0\leq i\lt m$ and $0\leq j\lt n$; assign $b_{i,j}\leftarrow 1$.

For $i\in(0,\dots,m-1)$:

For $i\in(0,\dots,m-1)$:

For $j\in(0,\dots,n-1)$:

For $j\in(0,\dots,n-1)$:

Return $\underset{0\leq i\lt m}{\max}\left(\underset{0\leq j\lt n}{\max}\left(b_{i,j}\right)\right)$.