Day 4: Camp Cleanup
Let $\ell$ be a list where for all $((a_0,a_1),(b_0,b_1))\in\ell$, we have $a_0,a_1,b_0,b_1\in\mathbb{N}$.
Part A
Let $n\leftarrow 0$.
For $((a_0,a_1),(b_0,b_1))\in\ell$:
- if ($a_0\leq b_0$ and $b_1\leq a_1$) or ($b_0\leq a_0$ and $a_1\leq b_1$), then $n\leftarrow n+1$.
Return $n$.
Part B
Let $n\leftarrow 0$.
For $((a_0,a_1),(b_0,b_1))\in\ell$:
- if ($b_0\leq a_0\leq b_1$) or ($b_0\leq a_1\leq b_1$) or ($a_0\leq b_0\leq a_1$) or ($a_0\leq b_1\leq a_1$), then $n\leftarrow n+1$.
Return $n$.