Day 1: Calorie Counting
Let $L$ be a set where for all $\ell\in L$, $\ell$ is a list such that for all $e\in\ell$, we have $e\in\mathbb{N}$.
Part A
Return $\underset{\ell\in L}{\max}\left(\sum_{e\in\ell}e\right).$
Part B
Let $m_0\leftarrow 0$.
Let $m_1\leftarrow 0$.
Let $m_2\leftarrow 0$.
For $\ell\in L$:
- assign $s\leftarrow\sum_{e\in\ell}e$;
- if $s\leq m_2$, then continue to next $\ell$;
- if $s\leq m_1$, then:
- assign $m_2\leftarrow s$;
- continue to next $\ell$;
- if $s\leq m_0$, then:
- assign $m_2\leftarrow m_1$;
- assign $m_1\leftarrow s$;
- continue to next $\ell$;
- assign $m_2\leftarrow m_1$;
- assign $m_1\leftarrow m_0$;
- assign $m_0\leftarrow s$.
Return $m_0+m_1+m_2$.